NI Adds Industry-Leading Measurement and Synchronization Technology to the CompactRIO Platform

The newest CompactRIO Controllers improve performance with TSN-enabled Ethernet ports and the NI-DAQmx driver.

AUSTIN, Texas – Feb. 27, 2018 – NI (Nasdaq: NATI), the provider of platform-based systems that enable engineers and scientists to solve the world’s greatest engineering challenges, announced today new CompactRIO Controllers that include NI-DAQmx and Time Sensitive Networking (TSN). These controllers offer deterministic communication and synchronized measurements across standard Ethernet networks to increase performance and help improve productivity in addition to flexibility. NI was the first to market with industrial embedded hardware supporting TSN, the next evolution of the IEEE 802.1 Ethernet standard, and provides these controllers as part of its continued investment in TSN. Engineers can use TSN to synchronize distributed systems across networks, which eliminates the need for costly synchronization cables.

As industries such as automotive, oil and gas, research and aerospace continue to implement the Industrial Internet of Things (IIoT), acquiring accurate, reliable and synchronized data across distributed nodes has become more challenging. As a result, companies must keep pace to ensure their systems are ready to meet these evolving requirements. 

In the research space, A.M.S. Software GmbH is already taking advantage of the flexibility of CompactRIO with NI-DAQmx. “We are excited about the new CompactRIO Controller because of the flexibility it offers us,” said Klaudius Pinkawa, CEO of A.M.S. Software GmbH. “We needed to set up several experiments in a lab and then perform them on an aircraft in zero gravity. CompactRIO with NI-DAQmx allowed us to perform any experiment using the same hardware in both environments, which saved development time and reduced risks to the experiments.

The new CompactRIO Controllers feature:

  • Submicrosecond synchronization with TSN over standard Ethernet for tightly synchronized, distributed measurements and control
  • Shorter time to measurement than previous CompactRIO Controllers because of intuitive NI-DAQmx driver software
  • Open and secure processing at the edge of the IIoT with the NI Linux Real-Time OS
  • High-performance data analysis and control with an industrial-grade processor and onboard FPGA, programmable with LabVIEW FPGA
  • Reliable operation in harsh environments with -40 °C to 70 °C operating temperature range, shock resistance up to 50 g and vibration resistance up to 5 g


With the addition of NI-DAQmx to the CompactRIO Controller family, engineers can access I/O directly from ready-to-use functions, which have made working with this driver the preferred data acquisition method for over 15 years. This intuitive driver coupled with the openness of the NI Linux Real-Time OS means users can continue to leverage the vast ecosystem of IP available for Linux, like Security Enhanced Linux (SE-Linux). 

For more than a decade, engineers have used CompactRIO Controllers to solve complex measurement, control and monitoring challenges. NI’s investment in the latest technologies better equips engineers and scientists to analyze and meet future engineering challenges.

To learn more about the new CompactRIO Controllers, visit www.ni.com/crio-controllers.

About NI

NI (ni.com) empowers engineers and scientists with a software-centric platform that incorporates modular hardware and an expansive ecosystem. This proven approach puts users firmly in control of defining what they need to accelerate their system design within test, measurement and control. NI’s solution helps build high-performance systems that exceed requirements, quickly adapt to change and ultimately improve the world.

PRODUCT, National Instruments, NI and ni.com are trademarks of National Instruments. Other product and company names listed are trademarks or trade names of their respective companies.

Image Gallery


Bookmark & Share



Media Contact

NI Corporate Media Relations

Email: pr@ni.com