Version:

Last Modified: February 7, 2018

Calculates and reports amplitude-shift keying (ASK) quadrature impairments on a symbol-by-symbol basis at the symbol timing.

The time-aligned and oversampled complex waveform data after matched filtering, frequency offset correction, and phase offset correction. Wire the **output complex waveform** parameter of MT Demodulate ASK to this parameter.

Trigger (start) time of the **Y** array.

**Default: **0.0

Time interval between data points in the **Y** array.

**Default: **1.0

The complex-valued signal-only baseband modulated waveform. The real and imaginary parts of this complex data array correspond to the in-phase (I) and quadrature-phase (Q) data, respectively.

The demodulated bit stream from the **output bit stream** parameter of MT Demodulate ASK.

The window over which impairments are measured.

Index of the first sample of the measurement window.

**Default: **0

Number of symbols over which to measure impairments. A value of -1 (default) measures impairments over all symbols. Positive values must be two or greater.

**Default: **-1

Error conditions that occur before this node runs.

The node responds to this input according to standard error behavior.

Standard Error Behavior

Many nodes provide an **error in** input and an **error out** output so that the node can respond to and communicate errors that occur while code is running. The value of **error in** specifies whether an error occurred before the node runs. Most nodes respond to values of **error in** in a standard, predictable way.

**Default: **No error

Parameter values defining the ASK system. Wire the **ASK system parameters** cluster of MT Generate ASK System Parameters (M) or MT Generate ASK System Parameters (map) to this cluster. Do not alter the values.

An ordered array that maps each symbol to its desired level. The number of ASK levels in the array is 2^{ N }, where *N* is the number of bits per symbol. The vector length for the symbols farthest from the origin is 1.

The measured magnitude error as a percentage. Magnitude error is the magnitude difference between the ideal and the actual measured symbol locations.

The RMS impairment value calculated over the **impairment measurement window**.

The peak impairment value measured over the **impairment measurement window**.

Index of the symbol having the peak magnitude of impairment.

The impairment value for each individual symbol.

The measured DC offset of the I or Q waveforms as a percentage of the largest I and Q value in the symbol map of the **recovered complex waveform**.

The DC offset of the I waveform, expressed as a percentage of the largest I or Q value in the symbol map.

The DC offset of the Q waveform, expressed as a percentage of the largest I or Q value in the symbol map.

The offset, in dB, of the constellation origin from its ideal location.

The measured phase error in degrees. Notice that the phase offset is removed by the demodulator and is excluded from this measurement.

The RMS impairment value calculated over the **impairment measurement window**.

The peak impairment value measured over the **impairment measurement window**.

Index of the symbol having the peak magnitude of impairment.

The impairment value for each individual symbol.

The measured error vector magnitude (EVM) expressed as a percentage.

The RMS impairment value calculated over the **impairment measurement window**.

The peak impairment value measured over the **impairment measurement window**.

Index of the symbol having the peak magnitude of impairment.

The impairment value for each individual symbol.

The measured modulation error ratio in dB.

Error information.

The node produces this output according to standard error behavior.

Standard Error Behavior

**error in** input and an **error out** output so that the node can respond to and communicate errors that occur while code is running. The value of **error in** specifies whether an error occurred before the node runs. Most nodes respond to values of **error in** in a standard, predictable way.

**Where This Node Can Run: **

Desktop OS: Windows

FPGA: Not supported

Web Server: Not supported in VIs that run in a web application