Table Of Contents

Filtering (Continuous) (G Dataflow)

Version:
    Last Modified: March 31, 2017

    Continuously filters an input sequence using a specific filter.

    connector_pane_image
    datatype_icon

    reset

    A Boolean that specifies the initialization of the internal state of the node.

    True Initializes the internal state to zero.
    False Initializes the internal state to the final state from the previous call of this node.

    This node automatically initializes the internal state to zero on the first call and runs continuously until this input is True.

    Default: False

    datatype_icon

    signal

    Input signal to filter.

    This input accepts the following data types:

    • Waveform
    • Double-precision, floating-point number
    • Complex double-precision, floating-point number
    • 1D array of waveforms
    • 1D array of double-precision, floating-point numbers
    • 1D array of complex double-precision, floating-point numbers
    • 2D array of double-precision, floating-point numbers
    datatype_icon

    filter

    The input filter.

    datatype_icon

    filter structure

    Structure of the filter.

    Name Value Description
    IIR Cascade 2nd Order 0 Uses IIR second-order filter stages.
    IIR Cascade 4th Order 1 Uses IIR fourth-order filter stages.
    IIR Direct 2 Uses the direct-form IIR filter.
    FIR 3 Uses the FIR filter.

    Default: IIR Cascade 2nd Order

    datatype_icon

    forward coefficients

    Forward coefficients of the filter.

    Default: 0

    datatype_icon

    reverse coefficients

    Reverse coefficients of the filter.

    Default: 0

    datatype_icon

    sampling frequency

    The sampling frequency in Hz.

    This value must be greater than zero.

    Default: 0

    datatype_icon

    error in

    Error conditions that occur before this node runs.

    The node responds to this input according to standard error behavior.

    Standard Error Behavior

    Many nodes provide an error in input and an error out output so that the node can respond to and communicate errors that occur while code is running. The value of error in specifies whether an error occurred before the node runs. Most nodes respond to values of error in in a standard, predictable way.

    error in does not contain an error error in contains an error
    If no error occurred before the node runs, the node begins execution normally.

    If no error occurs while the node runs, it returns no error. If an error does occur while the node runs, it returns that error information as error out.

    If an error occurred before the node runs, the node does not execute. Instead, it returns the error in value as error out.

    Default: No error

    datatype_icon

    filtered signal

    Filtered signal.

    This output can return the following data types:

    • Waveform
    • Double-precision, floating-point number
    • Complex double-precision, floating-point number
    • 1D array of waveforms
    • 1D array of double-precision, floating-point numbers
    • 1D array of complex double-precision, floating-point numbers
    • 2D array of double-precision, floating-point numbers
    datatype_icon

    error out

    Error information.

    The node produces this output according to standard error behavior.

    Standard Error Behavior

    Many nodes provide an error in input and an error out output so that the node can respond to and communicate errors that occur while code is running. The value of error in specifies whether an error occurred before the node runs. Most nodes respond to values of error in in a standard, predictable way.

    error in does not contain an error error in contains an error
    If no error occurred before the node runs, the node begins execution normally.

    If no error occurs while the node runs, it returns no error. If an error does occur while the node runs, it returns that error information as error out.

    If an error occurred before the node runs, the node does not execute. Instead, it returns the error in value as error out.

    Algorithm for Obtaining Filtered Signal with the FIR Filter

    If filter structure is FIR, this node obtains the elements of filtered signal using the following equation:

    y i = j = 0 N b 1 b j x i j for ( i 0 )
    where
    • y is filtered signal
    • Nb is the number of FIR coefficients
    • bj is the filter coefficients

    Algorithm for Obtaining Filtered Signal with the IIR Filter

    If filter structure is IIR Direct, this node obtains the elements of filtered signal using the following equation:

    y i = 1 a 0 ( j = 0 N b 1 b j x i j k = 1 N a 1 a k y i k ) for ( i 0 )
    where
    • y is filtered signal
    • Nb is the number of forward coefficients
    • bj is the forward coefficients
    • Na is the number of reverse coefficients
    • ak is the reverse coefficients

    Algorithm for Obtaining Filtered Signal with the IIR Cascade Filter

    If filter structure is IIR Cascade 2nd Order or IIR Cascade 4th Order, this node obtains the elements of filtered signal with a cascade of second- or fourth-order filter stages. The output of one filter stage is the input to the next filter stage for all Ns filter stages.

    Where This Node Can Run:

    Desktop OS: Windows

    FPGA: This product does not support FPGA devices


    Recently Viewed Topics