Table Of Contents

Window (G Dataflow)

Last Modified: January 12, 2018

Applies windowing to a signal.

connector_pane_image
datatype_icon

signal

Input signal.

This input accepts the following data types:

  • 1D array of double-precision floating-point numbers
  • 1D array of complex double-precision floating-point numbers
  • 2D array of double-precision floating-point numbers
  • Waveform
  • Waveform in complex double-precision, floating-point numbers
  • 1D array of waveforms
  • 1D array of waveforms in complex double-precision, floating-point numbers
datatype_icon

window type

Type of window to apply to the signal.

Name Value Description
Rectangle 0 Applies a rectangle window.
Hanning 1 Applies a Hanning window.
Hamming 2 Applies a Hamming window.
Blackman-Harris 3 Applies a Blackman-Harris window.
Exact Blackman 4 Applies an Exact Blackman window.
Blackman 5 Applies a Blackman window.
Flat Top 6 Applies a Flat Top window.
4 Term B-Harris 7 Applies a 4 Term B-Harris window.
7 Term B-Harris 8 Applies a 7 Term B-Harris window.
Low Sidelobe 9 Applies a Low Sidelobe window.
Blackman Nutall 11 Applies a Blackman Nutall window.
Cosine Tapered 12 Applies a Cosine Tapered window.
Triangle 30 Applies a Triangle window.
Bartlett-Hanning 31 Applies a Bartlett-Hanning window.
Bohman 32 Applies a Bohman window.
Parzen 33 Applies a Parzen window.
Welch 34 Applies a Welch window.
Kaiser 60 Applies a Kaiser window.
Dolph-Chebyshev 61 Applies a Dolph-Chebyshev window.
Gaussian 62 Applies a Gaussian window.
Force 64 Applies a Force window.
Exponential 65 Applies an Exponential window.

Default: Hanning

datatype_icon

scaled?

A Boolean that specifies whether to apply a scaled window to the input signal.

True Applies a scaled window.
False Does not apply a scaled window.

Default: False

datatype_icon

symmetric?

A Boolean that specifies whether to apply a symmetric window to the input signal.

True Applies a symmetric window.
False Does not apply a symmetric window.

Default: False

datatype_icon

error in

Error conditions that occur before this node runs.

The node responds to this input according to standard error behavior.

Standard Error Behavior

Many nodes provide an error in input and an error out output so that the node can respond to and communicate errors that occur while code is running. The value of error in specifies whether an error occurred before the node runs. Most nodes respond to values of error in in a standard, predictable way.

error in does not contain an error error in contains an error
If no error occurred before the node runs, the node begins execution normally.

If no error occurs while the node runs, it returns no error. If an error does occur while the node runs, it returns that error information as error out.

If an error occurred before the node runs, the node does not execute. Instead, it returns the error in value as error out.

Default: No error

datatype_icon

window parameter

A value that affects the output coefficients when window type is Kaiser, Gaussian, or Dolph-Chebyshev.

If window type is any other type of window, this node ignores this input.

This input represents the following information for each type of window:

  • Kaiser—Beta parameter
  • Gaussian—Standard deviation
  • Dolph-Chebyshev—The ratio of the main lobe to the side lobe, s, expressed in decibels

Default: NaN—Causes this node to set beta to 0 for a Kaiser window, the standard deviation to 0.2 for a Gaussian window, and s to 60 dB for a Dolph-Chebyshev window

datatype_icon

windowed signal

The input signal with the window applied.

This output can return the following data types:

  • 1D array of double-precision floating-point numbers
  • 1D array of complex double-precision floating-point numbers
  • 2D array of double-precision floating-point numbers
  • Waveform
  • Waveform in complex double-precision, floating-point numbers
  • 1D array of waveforms
  • 1D array of waveforms in complex double-precision, floating-point numbers
datatype_icon

error out

Error information.

The node produces this output according to standard error behavior.

Standard Error Behavior

Many nodes provide an error in input and an error out output so that the node can respond to and communicate errors that occur while code is running. The value of error in specifies whether an error occurred before the node runs. Most nodes respond to values of error in in a standard, predictable way.

error in does not contain an error error in contains an error
If no error occurred before the node runs, the node begins execution normally.

If no error occurs while the node runs, it returns no error. If an error does occur while the node runs, it returns that error information as error out.

If an error occurred before the node runs, the node does not execute. Instead, it returns the error in value as error out.

Where This Node Can Run:

Desktop OS: Windows

FPGA: Not supported

Web Server: Not supported in VIs that run in a web application


Recently Viewed Topics