Version:

Last Modified: January 12, 2018

Generates a signal containing a periodic sinc pattern.

Amplitude of the pattern.

**Default: **1

Shifts the pattern in the time axis.

**Default: **0

Number of zero crossings between two adjacent peaks, which is equal to this input minus 1.

**Default: **9

Error conditions that occur before this node runs.

The node responds to this input according to standard error behavior.

Standard Error Behavior

Many nodes provide an **error in** input and an **error out** output so that the node can respond to and communicate errors that occur while code is running. The value of **error in** specifies whether an error occurred before the node runs. Most nodes respond to values of **error in** in a standard, predictable way.

**Default: **No error

Sampling interval. This input must be greater than zero. If this input is less than or equal to zero, this node sets the output pattern to an empty array and returns an error.

**Default: **0.1

Number of samples in the pattern.

**samples** must be greater than 0. Otherwise, this node returns an error.

**Default: **128

Timestamp of the output signal. If this input is unwired, this node uses the current time as the timestamp of the output signal.

This input is available only if you configure this node to return a waveform.

Output periodic sinc pattern.

This output can return a waveform or an array of double-precision, floating-point numbers.

Error information.

The node produces this output according to standard error behavior.

Standard Error Behavior

**error in** input and an **error out** output so that the node can respond to and communicate errors that occur while code is running. The value of **error in** specifies whether an error occurred before the node runs. Most nodes respond to values of **error in** in a standard, predictable way.

If the sequence *Y* represents **periodic sinc pattern**, this node generates the pattern according to the following equation:

${y}_{i}=\{\begin{array}{c}a{(-1)}^{k(n-1)}\\ a\frac{\mathrm{sin}\left(n(i\mathrm{\Delta}t-d)/2\right)}{n\mathrm{sin}\left((i\mathrm{\Delta}t-d)/2\right)}\end{array}\begin{array}{c}i\times \mathrm{\Delta}t-d=2k\pi ,k\text{\hspace{0.17em}}\text{is an integer}\\ \text{Otherwise}\end{array}$

for *i* = 0, 1, 2, ..., *N* - 1

where

*a*is**amplitude***n*is**order***d*is**delay***N*is**samples**. A higher value*n*results in a wider bandwidth.

**Where This Node Can Run: **

Desktop OS: Windows

FPGA: Not supported

Web Server: Not supported in VIs that run in a web application