Table Of Contents

eig

Version:
    Last Modified: March 15, 2017

    Computes the eigenvalues and eigenvectors for real or complex square matrices. eig(a) solves the standard problem a x = lambda*x. eig(a, b) solves the general problem a x = lambda*b x.

    Syntax

    ev = eig(a)
    ev = eig(a, b)
    [evec, evdiag] = eig(a)
    [evec, evdiag] = eig(a, b)

    Inputs

    a

    Square matrix whose dependent matrices are also square.

    b

    Matrix of the same size as a.

    Outputs

    ev

    Eigenvalues of a or the generalized eigenvalues of a and b. ev is a vector.

    evec

    Square matrix whose columns are the normalized eigenvectors of a or the normalized generalized eigenvectors of a and b.

    evdiag

    Matrix of the same type as a with the elements of ev on the diagonal.

    Further Information

    MathScript does not solve the off-diagonal Jordan structure associated with repeated roots. If repeated roots to eig(a) or eig(a, b) exist, MathScript might artificially ill-condition evec.

    % Eigenvalues
    A = [2, -1; 11, 4]
    C = eig(A)
    % Compute generalized eigenvalues and check results
    B = [3, 2; -9, -1]
    [EVEC, EVDIAG] = eig(A, B)

    Where This Node Can Run:

    Desktop OS: Windows

    FPGA: This product does not support FPGA devices


    Recently Viewed Topics