Version:

Last Modified: March 15, 2017

Generates a signal containing a ramp pattern of samples.

Type of ramp to generate.

Name | Value | Description |
---|---|---|

Linear | 0 | Uses the linear type. |

Logarithmic | 1 | Uses the logarithmic type. |

**Default: **Linear

First value of the ramp. This node does not impose conditions on the relationship between **start** and **end**. Therefore, this node can generate ramp-up and ramp-down patterns.

**Default: **0

Error conditions that occur before this node runs.

The node responds to this input according to standard error behavior.

Standard Error Behavior

Many nodes provide an **error in** input and an **error out** output so that the node can respond to and communicate errors that occur while code is running. The value of **error in** specifies whether an error occurred before the node runs. Most nodes respond to values of **error in** in a standard, predictable way.

**Default: **No error

Sampling rate in samples per second.

This input is available only if you configure this node to return a waveform.

**Default: **0.1

Number of samples in the signal.

**Default: **128

Timestamp of the output signal. If this input is unwired, this node uses the current time as the timestamp of the output signal.

This input is available only if you configure this node to return a waveform.

Output ramp pattern.

This output can return a waveform or an array of double-precision, floating-point numbers.

Error information.

The node produces this output according to standard error behavior.

Standard Error Behavior

**error in** input and an **error out** output so that the node can respond to and communicate errors that occur while code is running. The value of **error in** specifies whether an error occurred before the node runs. Most nodes respond to values of **error in** in a standard, predictable way.

Let the sequence X represent **ramp pattern**. If **type** is Linear, the node generates the pattern according to the following equation:

${x}_{i}={x}_{0}+i\mathrm{\Delta}x$

for *i* = 0, 1, 2, …, *n* - 1

where

*x*_{0}is**start***n*is the number of samples-
$\mathrm{\Delta}x=\frac{(\text{end}-\text{start})}{m}$,
$m=n$ if
**exclude end?**is True. Otherwise, $m=n-1$.

Let the sequence X represent **ramp pattern**. If **type** is Logarithmic, the node generates the pattern according to the following equation:

${x}_{i}=\mathrm{exp}[\mathrm{ln}\left({x}_{0}\right)+i\mathrm{\Delta}x]$

for *i* = 0, 1, 2, …, *n* - 1

where

*x*_{0}is the**start***n*is the number of samples-
$\mathrm{\Delta}x=\frac{[\mathrm{ln}\left(\text{end}\right)-\mathrm{ln}\left(\text{}\text{start}\right)]}{m}$,
$m=n$ if
**exclude end?**is True. Otherwise, $m=n-1$. **start**and**end**must be greater than 0.

**Where This Node Can Run: **

Desktop OS: Windows

FPGA: This product does not support FPGA devices