# Pattern Generator (Ramp Pattern by Samples) (G Dataflow)

Version:
Last Modified: January 9, 2017

Generates a signal containing a ramp pattern of samples.  ## type

Type of ramp to generate.

Name Value Description
Linear 0 Uses the linear type.
Logarithmic 1 Uses the logarithmic type.

Default: Linear ## start

First value of the ramp. This node does not impose conditions on the relationship between start and end. Therefore, this node can generate ramp-up and ramp-down patterns.

Default: 0 ## end

Final value of the ramp. This node does not impose conditions on the relationship between start and end. Therefore, this node can generate ramp-up and ramp-down patterns.

Default: 1 ## exclude end

A Boolean that determines whether to use the final value of the ramp to generate the ramp pattern.

 True Uses the final value of the ramp when generating the ramp pattern. False Ignores the final value of the ramp when generating the ramp pattern.

Default: False ## error in

Error conditions that occur before this node runs. The node responds to this input according to standard error behavior.

Default: No error ## dt

Sampling rate in samples per second.

This input is available only if you configure this node to return a waveform.

Default: 0.1 ## samples

Number of samples in the signal.

Default: 128 ## ramp pattern

Output ramp pattern.

This output returns a waveform or an array of double-precision, floating point numbers. ## error out

Error information. The node produces this output according to standard error behavior.

## Algorithm for Generating the Linear Ramp Pattern

Let the sequence X represent ramp pattern. If type is Linear, the node generates the pattern according to the following equation:

${x}_{i}={x}_{0}+i\mathrm{\Delta }x$

for i = 0, 1, 2, …, n - 1

where

• x0 is the start
• n is the number of samples
• $\mathrm{\Delta }x=\frac{\left(\text{end}-\text{start}\right)}{m}$, $m=n$ if exclude end? is True. Otherwise, $m=n-1$.

## Algorithm for Generating the Logarithmic Ramp Pattern

Let the sequence X represent ramp pattern. If type is Logarithmic, the node generates the pattern according to the following equation:

${x}_{i}=\mathrm{exp}\left[\mathrm{ln}\left({x}_{0}\right)+i\mathrm{\Delta }x\right]$

for i = 0, 1, 2, …, n - 1

where

• x0 is the start
• n is the number of samples
• $\mathrm{\Delta }x=\frac{\left[\mathrm{ln}\left(\text{end}\right)-\mathrm{ln}\left(\text{}\text{start}\right)\right]}{m}$, $m=n$ if exclude end? is True. Otherwise, $m=n-1$.
• start and end must be greater than 0

Where This Node Can Run:

Desktop OS: Windows

FPGA: Not supported