From 12:00 PM - 4:00 PM CST on Thursday, October 18, ni.com will be undergoing system upgrades that may result in temporary service interruption.

We appreciate your patience as we improve our online experience.

From 12:00 PM - 4:00 PM CST on Thursday, October 18, ni.com will be undergoing system upgrades that may result in temporary service interruption.

We appreciate your patience as we improve our online experience.

Version:

Last Modified: January 9, 2017

Generates a pseudorandom sequence of values that are the number of discrete events that occur in a specific interval of a unit rate Poisson process.

You can use the Poisson process to describe the probability of a certain number of events happening in a given period of time. For example, you can use the Poisson process to describe the nuclear decay of atoms and the number of messages a transmitting station receives.

A Boolean that controls the reseeding of the noise sample generator after the first execution of the node. By default, this node maintains the initial internal seed state.

True | Accepts a new seed and begins producing noise samples based on the seed. If the given seed is less than or equal to 0, the node ignores a reset value of True and resumes producing noise samples as a continuation of the previous sequence. |

False | Resumes producing noise samples as a continuation of the previous noise sequence. The node ignores new seed inputs while reset is False. |

**Default: **False

Interval of a unit rate Poisson process. **mean** must be greater than or equal to 0.

**Default: **0.5

A number that initializes the noise generator.

The value of **seed** cannot be a multiple of 16364. If **reset** is unwired, this node maintains the internal seed state.

seed is greater than 0 |
Generates noise samples based on the given seed value. For multiple calls to the node, the node accepts or rejects new seed inputs based on the given reset value. |

seed is less than or equal to 0 |
Generates a random seed value and produces noise samples based on that seed value. For multiple calls to the node, if seed remains less than or equal to 0, the node ignores the reset input and produces noise samples as a continuation of the initial noise sequence. |

**Default: **-1

Error conditions that occur before this node runs. The node responds to this input according to standard error behavior.

**Default: **No error

Sample rate in samples per second.

This input is available only if you configure this node to return a waveform.

**Default: **1000

Number of samples in the signal.

**Default: **The default value of this input changes depending on how you configure this node. If you configure this node to return a waveform, the default is 1000. If you configure this node to return an array of double-precision, floating-point numbers, the default is 128.

Poisson-distributed, pseudorandom pattern.

This output returns a waveform or an array of double-precision, floating point numbers.

The following equation defines the probability density function of the **Poisson noise** this node generates:

$P(X=n)={e}^{-\lambda}\frac{{\lambda}^{n}}{n!}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}(n=0,\text{\hspace{0.17em}}1,\text{\hspace{0.17em}}\mathrm{...})\text{\hspace{0.17em}}$

where
$\lambda $ is **mean**.

The following equations define the mean value, $\mu $, and the standard deviation value, $\sigma $, of the pseudorandom sequence:

$\mu =E\left\{x\right\}=\lambda $

$\sigma ={\left[E\left\{{(x-\mu )}^{2}\right\}\right]}^{1/2}=\sqrt{\lambda}$

**Where This Node Can Run: **

Desktop OS: Windows

FPGA: Not supported