Table Of Contents

Jacobian Elliptic Function (G Dataflow)

Version:
    Last Modified: January 9, 2017

    Determines the Jacobian elliptic function.

    connector_pane_image
    datatype_icon

    x

    The input argument.

    Default: 0

    datatype_icon

    k

    The integrand parameter.

    datatype_icon

    error in

    Error conditions that occur before this node runs. The node responds to this input according to standard error behavior.

    Default: No error

    datatype_icon

    cn

    Value of the Jacobi elliptic function cn.

    datatype_icon

    dn

    The Jacobi elliptic function dn.

    datatype_icon

    sn

    Value of the Jacobi elliptic function sn.

    datatype_icon

    phi

    The upper limit of the integral defining the function.

    datatype_icon

    error out

    Error information. The node produces this output according to standard error behavior.

    Algorithm for Calculating the Jacobian Elliptic Function

    The following equations define the Jacobian elliptic function.

    c n ( x , k ) = cos ( ϕ )
    sn ( x , k ) = sin ( ϕ )
    dn ( x , k ) = 1 k sin 2 ϕ

    where

    x = 0 ϕ 1 1 k sin 2 θ d θ

    The function is defined according to the following intervals for the input values.

    x , k [ 0 , 1 ]

    For any real value of integrand parameter k in the unit interval, the function is defined for all real values of x.

    Where This Node Can Run:

    Desktop OS: Windows

    FPGA: Not supported


    Recently Viewed Topics