Calculates and reports quadrature-amplitude modulation (QAM) quadrature impairments.

The time-aligned and oversampled complex waveform data after matched filtering, frequency offset correction, and phase offset correction. Wire the **recovered complex waveform** parameter of MT Demodulate QAM to this parameter.

Trigger (start) time of the **Y** array.

**Default: **0.0

Time interval between data points in the **Y** array.

**Default: **1.0

The complex-valued signal-only baseband modulated waveform. The real and imaginary parts of this complex data array correspond to the in-phase (I) and quadrature-phase (Q) data, respectively.

The demodulated bit stream from the **output bit stream** parameter of MT Demodulate QAM.

The window over which impairments are measured.

Index of the first sample of the measurement window.

**Default: **0

Number of symbols over which to measure impairments. A value of -1 (default) measures impairments over all symbols. Positive values must be two or greater.

**Default: **-1

Error conditions that occur before this node runs. The node responds to this input according to standard error behavior.

**Default: **no error

A value that indicates which set of equations is used to represent impairments.

In the equations in the following table,
$I$ is the real component and
$Q$ is the imaginary component of each sample in the **input complex waveform**.
${I}^{\prime}$ and
${Q}^{\prime}$ are the real and imaginary components of the corresponding sample in the **output complex waveform**.
${I}_{\circ}$ is **I DC Offset (%)** / 100, and
${Q}_{\circ}$ is **Q DC Offset (%)** / 100.

Vertical Shear | The definition uses the following equations for I/Q impairments: ${I}^{\prime}=a*\text{\hspace{0.17em}}I+\text{\hspace{0.17em}}{I}_{\circ}$ ${Q}^{\prime}=a*\mathrm{sin}\left(\phi \right)\text{\hspace{0.17em}}*\text{\hspace{0.17em}}I+\text{\hspace{0.17em}}b*\text{\hspace{0.17em}}\mathrm{cos}\left(\phi \right)\text{\hspace{0.17em}}*\text{\hspace{0.17em}}Q+\text{\hspace{0.17em}}{Q}_{\circ}$ where φ is the specified quadrature skew, in radians
$\gamma $ = 10 $a=\gamma *\text{\hspace{0.17em}}b$ $b=\sqrt{\frac{2}{1+{\gamma}^{2}}}$ In matrix form, these equations are represented by $\left[\begin{array}{c}{I}^{\prime}\\ {Q}^{\prime}\end{array}\right]=S\left[\begin{array}{c}I\\ Q\end{array}\right]+\left[\begin{array}{c}{I}_{\circ}\\ {Q}_{\circ}\end{array}\right]$ where $S=\left[\begin{array}{cc}a& 0\\ a*\mathrm{sin}\phi & b*\mathrm{cos}\phi \end{array}\right]$ |

Axis Shear | With this option selected, this node uses an impairment definition that simplifies the conversion between measured impairments and their inverse impairments. For example, you may want to measure the I/Q impairments of a system and compensate for those impairments by applying the inverse impairments to the generated or received waveform. Using the Axis Shear definition, given a measured skew and imbalance (in dB), the inverse impairments are -1.0 * ${I}^{\prime}=I*\text{\hspace{0.17em}}\sqrt{\gamma}-Q*\left(\frac{\phi}{2}\right)+{I}_{\circ}$ ${Q}^{\prime}=-I*\left(\frac{\phi}{2}\right)+Q*\left(\frac{1}{\sqrt{\gamma}}\right)+{Q}_{\circ}$ where
$\gamma $ = 10 φ is the specified quadrature skew, in radians In matrix form, these equations are represented by $\left[\begin{array}{c}{I}^{\prime}\\ {Q}^{\prime}\end{array}\right]=S\left[\begin{array}{c}I\\ Q\end{array}\right]+\left[\begin{array}{c}{I}_{\circ}\\ {Q}_{\circ}\end{array}\right]$ where $S=\left[\begin{array}{cc}\sqrt{\gamma}& -\phi /2\\ -\phi /2& \frac{1}{\sqrt{\gamma}}\end{array}\right]$ |

**Default: **Vertical Shear

The measured quadrature skew of the complex waveform in degrees.

Parameter values defining the QAM system. Wire the **QAM system parameters** cluster of MT Generate QAM System Parameters (M) or MT Generate QAM System Parameters (map) to this cluster. Do not alter the values.

An ordered array that maps each symbol to its desired coordinates in the complex plane. The number of QAM states in the array is 2^{ N }, where *N* is the number of bits per symbol. The vector length for the symbols farthest from the origin is 1.

The measured magnitude error as a percentage. Magnitude error is the magnitude difference between the ideal and the actual measured symbol locations.

The RMS impairment value calculated over the **impairment measurement window**.

The peak impairment value measured over the **impairment measurement window**.

Index of the symbol having the peak magnitude of impairment.

The impairment value for each individual symbol.

The measured DC offset of the I or Q waveforms as a percentage of the largest I and Q value in the symbol map of the **recovered complex waveform**.

The DC offset of the I waveform, expressed as a percentage of the largest I or Q value in the symbol map.

The DC offset of the Q waveform, expressed as a percentage of the largest I or Q value in the symbol map.

The offset, in dB, of the constellation origin from its ideal location.

The measured ratio of I gain to Q gain, in dB.

The measured phase error in degrees. Notice that the phase offset is removed by the demodulator and is excluded from this measurement.

The RMS impairment value calculated over the **impairment measurement window**.

The peak impairment value measured over the **impairment measurement window**.

Index of the symbol having the peak magnitude of impairment.

The impairment value for each individual symbol.

The measured error vector magnitude (EVM) expressed as a percentage.

The RMS impairment value calculated over the **impairment measurement window**.

The peak impairment value measured over the **impairment measurement window**.

Index of the symbol having the peak magnitude of impairment.

The impairment value for each individual symbol.

The measured modulation error ratio in dB.

Error information. The node produces this output according to standard error behavior.

**Installed By: **LabVIEW Communications System Design Suite (introduced in 1.0)

**Where This Node Can Run: **

Desktop OS: Windows

FPGA: Not supported